14.2.4. 設定 hyper parameters 超參數
本教程是使用 DQN 方法來學習的。DQN 是一種強化學習方法,通過近似動作值函數(Q值)來選擇深度神經網絡。Agent 會遵照在 /turtlebot3_machine_learning/turtlebot3_dqn /nodes/turtlebot3_dqn_stage#中的 hyper parameters 超參數。
Hyper parameter | 預設值 | 說明 |
episode_step | 6000 | The time step of one episode. |
target_update | 2000 | Update rate of target network. |
discount_factor | 0.99 | Represents how much future events lose their value according to how far away. |
learning_rate | 0.00025 | Learning speed. 如果該值太大,學習效果不好,如果太小,學習時間就會很長。 |
epsilon | 1.0 | The probability of choosing a random action. |
epsilon_decay | 0.99 | Reduction rate of epsilon. When one episode ends, the epsilon reduce. |
epsilon_min | 0.05 | The minimum of epsilon. |
batch_size | 64 | Size of a group of training samples. |
train_start | 64 | Start training if the replay memory size is greater than 64. |
memory | 1000000 | The size of replay memory. |
Last updated