14.2.4. 設定 hyper parameters 超參數
本教程是使用 DQN 方法來學習的。DQN 是一種強化學習方法,通過近似動作值函數(Q值)來選擇深度神經網絡。Agent 會遵照在 /turtlebot3_machine_learning/turtlebot3_dqn /nodes/turtlebot3_dqn_stage#中的 hyper parameters 超參數。
Hyper parameter
預設值
說明
episode_step
6000
The time step of one episode.
target_update
2000
Update rate of target network.
discount_factor
0.99
Represents how much future events lose their value according to how far away.
learning_rate
0.00025
Learning speed. 如果該值太大,學習效果不好,如果太小,學習時間就會很長。
epsilon
1.0
The probability of choosing a random action.
epsilon_decay
0.99
Reduction rate of epsilon. When one episode ends, the epsilon reduce.
epsilon_min
0.05
The minimum of epsilon.
batch_size
64
Size of a group of training samples.
train_start
64
Start training if the replay memory size is greater than 64.
memory
1000000
The size of replay memory.
Last updated