14.2.4. 設定 hyper parameters 超參數

本教程是使用 DQN 方法來學習的。DQN 是一種強化學習方法,通過近似動作值函數(Q值)來選擇深度神經網絡。Agent 會遵照在 /turtlebot3_machine_learning/turtlebot3_dqn /nodes/turtlebot3_dqn_stage#中的 hyper parameters 超參數。

Hyper parameter

預設值

說明

episode_step

6000

The time step of one episode.

target_update

2000

Update rate of target network.

discount_factor

0.99

Represents how much future events lose their value according to how far away.

learning_rate

0.00025

Learning speed. 如果該值太大,學習效果不好,如果太小,學習時間就會很長。

epsilon

1.0

The probability of choosing a random action.

epsilon_decay

0.99

Reduction rate of epsilon. When one episode ends, the epsilon reduce.

epsilon_min

0.05

The minimum of epsilon.

batch_size

64

Size of a group of training samples.

train_start

64

Start training if the replay memory size is greater than 64.

memory

1000000

The size of replay memory.

Last updated